Source code for vak.common.labels

from __future__ import annotations

import pathlib

import numpy as np
import pandas as pd

from . import annotation


[docs] def to_map(labelset: set, map_unlabeled: bool = True) -> dict: """Convert set of labels to `dict` mapping those labels to a series of consecutive integers from 0 to n inclusive, where n is the number of labels in the set. This 'labelmap' is used when mapping labels from annotations of a vocalization into a label for every time bin in a spectrogram of that vocalization. If ``map_unlabeled`` is True, then the label 'unlabeled' will be added to labelset, and will map to 0, so the total number of classes is n + 1. Parameters ---------- labelset : set Set of labels used to annotate a dataset. map_unlabeled : bool If True, include key 'unlabeled' in mapping. Any time bins in a spectrogram that do not have a label associated with them, e.g. a silent gap between vocalizations, will be assigned the integer that the 'unlabeled' key maps to. Returns ------- labelmap : dict Maps labels to integers. """ if not isinstance(labelset, set): raise TypeError( f"type of labelset must be set, got type {type(labelset)}" ) labellist = [] if map_unlabeled is True: labellist.append("unlabeled") labellist.extend(sorted(list(labelset))) labelmap = dict(zip(labellist, range(len(labellist)))) return labelmap
[docs] def to_set(labels_list: list[np.ndarray | list]) -> set: """Given a list of labels from annotations, return the set of (unique) labels. Parameters ---------- labels_list : list Of labels from annotations, either a list of numpy.ndarrays or a list of lists. Returns ------- labelset : set Unique set of labels found in ``labels_list``. Examples -------- >>> labels_list = [voc.annot.labels for voc in vds.voc_list] >>> labelset = to_set(labels_list) >>> print(labelset) {'a', 'b', 'c', 'd', 'e'} """ all_labels = [lbl for labels in labels_list for lbl in labels] labelset = set(all_labels) return labelset
[docs] def from_df( dataset_df: pd.DataFrame, dataset_path: str | pathlib.Path ) -> list[np.ndarray]: """Returns labels for each vocalization in a dataset. Takes Pandas DataFrame representing the dataset, loads annotation for each row in the DataFrame, and then returns labels from each annotation. Parameters ---------- dataset_df : pandas.DataFrame created by vak.io.dataframe.from_files Returns ------- labels : list of array-like, labels for each vocalization in the dataset. """ dataset_path = pathlib.Path(dataset_path) if not dataset_path.exists() or not dataset_path.is_dir(): raise NotADirectoryError( f"`dataset_path` not found or not recognized as a directory: {dataset_path}" ) annots = annotation.from_df(dataset_df, dataset_path) return [annot.seq.labels for annot in annots]
ALPHANUMERIC = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" DUMMY_SINGLE_CHAR_LABELS = [ # some large range of characters not typically used as labels chr(x) for x in range(162, 400) ] # start with alphanumeric since more human readable; # mapping can be arbitrary as long as it's consistent DUMMY_SINGLE_CHAR_LABELS = (*ALPHANUMERIC, *DUMMY_SINGLE_CHAR_LABELS) # added to fix https://github.com/NickleDave/vak/issues/373
[docs] def multi_char_labels_to_single_char( labelmap: dict, skip: tuple[str] = ("unlabeled",) ) -> dict: """Return a copy of a ``labelmap`` where any labels that are strings with multiple characters are converted to single characters. This makes it possible to correctly compute metrics like Levenshtein edit distance. Labels that are strings with multiple characters are replaced by a single-label character from the constant ``vak.labels.DUMMY_SINGLE_CHAR_LABELS``. The replacement is grabbed with the index of the multi-character label from the sorted ``dict``. Parameters ---------- labelmap : dict That maps human-readable string labels to integers. As returned by ``vak.labels.to_map``. skip : tuple Of strings, labels to leave as multiple characters. Default is ('unlabeled',). Returns ------- labelmap : dict Where any keys with multiple characters in string are converted to dummy single characters. """ current_str_labels = sorted( # sort to be extra sure we get same order every time # (even though OrderedDict is now default in Python). # Same order forces mapping to single characters to be deterministic across function calls. labelmap.keys() ) new_labelmap = {} for dummy_label_ind, label_str in enumerate(current_str_labels): label_int = labelmap[label_str] if len(label_str) > 1 and label_str not in skip: # replace with dummy label new_label_str = DUMMY_SINGLE_CHAR_LABELS[dummy_label_ind] new_labelmap[new_label_str] = label_int else: new_labelmap[label_str] = label_int return new_labelmap